ECEN 524 - ROBOT LEARNING, SANTA CLARA UNIVERSITY, WINTER 2026

Robot Imitation Learning from Kinesthetic Teaching

Jack Landers

I. INTRODUCTION

In this report, we explore Dynamic Movement Primitives,
Multiscale Dynamic Time Warping, and Gaussian Mixture
Regression as techniques for robot learning. We collected data
for cartesian positions mapping trajectories of a manipulator
as a complex task was performed by multiple participants.
More demonstrations require more data collection, deeper
data analysis, and further computations, but can be useful for
creating a robust model that can generalize. The 7-DOF robotic
arm was controlled physically while in gravity compensation
mode, so that we could manually demonstrate the desired
trajectories for performing the task. Our goal is to utilize this
data to develop a generalized control policy, whereby the robot
can perform this task for any initial and end position, and avoid
any obstacles detected in its path.

II. VIZUALIZING THE DATA
A. Displaying a Demonstration

Altogether we collected eleven demonstrations of the tra-
jectories each individually represented in a csv file with
timestamps for readings of cartesian positions (X, y, and z,)
and quaternion rotation (qw, gx, qy, qz). We begin by plotting
a singular demonstration to understand this data.

Fig. 1: x, y, z for a single pick and place demonstration

B. Finding Points of Interest

While quaternion data is especially hard to interpret, the z
data is most recognizable as our task was to pick and place.
For this reason, we define the moments of action when we
pick and place as 2 local minima in the z data. To extrapolate
these points of interest we convert the timestamps to timesteps
and use a threshold model to identify significant extrema
with the pick action at z-minimum in the first 20 seconds
of demonstration, the maximum between 10 seconds and 30
seconds, and the place as our final z-minimum after that.
Defining these extrema, we can then pre-process our data
for learning, by removing noisy demonstrations and using
the picking and placing z-values as initial and end positions,
respectively. This process filtering the data to procure the
trajectories from our complete demonstration data is shown
in Figure 2.

Professor Maria Kyrarini, Santa Clara University
Submission deadline February 2, 2026

2z(t) with detected extrema
T

1 Max
| (t=27.20, z=0.010)
Min 2

h
0 10 20 30 40
Time (s) [T=0 at start]

(a) Finding Extrema in the Altitude

Minl - Min2 Z Trajectories Over Time

0.075
0.050
0.025
0.000
N
-0.025
~0.050
-0.075

-0.100

10 15 20 25 30
Time (s)

(b) Z-axes of the Pick and Place Demonstrations

Minl - Min2 XY Trajectories Combined

(c) Overhead of the Pick and Place Demonstrations

Fig. 2: Preprocessing the Trajectories Data

demo_id
—— demoll

demo2
—— demo3
—— demo4
—— demos
—— demos

demo_id

ECEN 524 - ROBOT LEARNING, SANTA CLARA UNIVERSITY, WINTER 2026

1II. DYNAMIC MOVEMENT PRIMITIVES

Dynamic Movement Primitives (DMP) describes converging
a mechanical system to a given target to perform complex
behaviors in real-time. They use an added forcing term to a
stable behavior in order to produce a complex trajectory. The
learnable autonomous forcing term transforms simple dynami-
cal systems into weakly nonlinear ones such that the trajectory
would always converge towards that demonstrated and is zero
initially. Once we introduce a new initial or goal state, the path
is discrete from point to point and modified by an attractor.
DMPs are especially effective at adaptively repeating simple
actions in novel contexts like target switching, by reducing
over-amplifications in the trajectory. They are also reliable due
to their nature as bounded input bounded output stable systems
that are invariant to rescaling.

f(s) = 7% — a(B(g —x) — 7i) (1)
Where:

e x,T,% are the position, velocity, and acceleration,
o 7 is the temporal scaling factor,

e «, [are the spring damper gains, and

o f(s) is the nonlinear force in terms of phase.

A. PyDMP

To visualize the Dynamic Movement Primitives we used the
PyDMP library by AlexanderFabisch. With this we are treating
our trajectory as a spring damper system by calculating the
nonlinear forcing term that defines the shape of the movement
over time from phase using Equation 1. Figure 3 shows that
the DMP learns to imitate a singular trajectory movement.
Such learning attractor models are vital for repetitive robotic
tasks in dynamic environments that may include modifications
in the boundaries, constraints, or obstacles posed to the robot.

B. Testing Generalization

To test the adaptiveness of our DMP model, we introduce
offset to our initial and end position, to determine if the
output trajectory still follows a similar shape. In Figure 4 it is
evident that the model has generalized the demonstration as
the trajectories both scale and translate.

IV. DYNAMIC TIME WARPING

Before we can align multiple trajectories, it must be con-
sidered that our pick and place demonstrations were not per-
formed at identical speeds, and that the same movements can
take place at different paces across the trajectory. In order to
synchronize the data in an optimal way we use Dynamic Time
Warping (DTW) which evaluates corresponding differences in
both time and space. This requires elastic alignment, matching
shapes even without phase, where multiple positions in x
may correspond to a single position in y or vice-versa. Our
optimal path here must retain path bounds both monotonicity
and sequentialism to represent the minimum distance between
previous points, and the Euclidian distance of the next point.

XY: Demo vs DMP

—— Demo
DMP
0.90 Start
End
0.85
I
0.80 A
/
0.75 A :
0.70 A
0.05 0.10 0.15 0.20 0.25 0.30

Fig. 3: Applying the DMP

Fig. 4: Testing Generalization for Offsets in X, y, and Both
Axes.

A. Distance Matrix

To temporally align different demonstrations, we calculate
the Euclidean distance cost of their trajectories for discrete
timesteps and display them in a matrix. In Figure 5 we
visualize the most closely aligned timelines, and can exclude
demos 2 and 11 as outliers.

B. Applying DTW

We start with the nearest demonstrations and apply the
DTW using the dtw-python library to produce a warping path
showing the timing difference between demos 3 and 4 in
Figure 6.

C. Multiscale DTW

For comparison, we also developed a Dynamic Time Warp-
ing strategy that utilizes multiscaling as outlined in Chapter 4
of ‘Information Retrieval for Music and Motion’ by Springer,
Berlin, and Heidelberg. The technique accelerates the calcula-
tion by combining DTWs of different resolutions to constrain
the path at high resolutions, where the computation increases
exponentially. Figures 7 and 8 show the process of resampling
the trajectory and producing a weighted representation of the

ECEN 524 - ROBOT LEARNING, SANTA CLARA UNIVERSITY, WINTER 2026

DTW Distance Matrix (XYZ Trajectories)

12

10

9dueIsia m1d

Fig. 5: Distance Matrix

DTW warping path: demo3 - demo4 (XYZ)

140

120 A

100 A

demo3 index
B (=] o
o o o

N
o
L

o
s

0 25 50 75 100 125 150 175 200
demo4 index

Fig. 6: Warping Path

warping path, with the band of local calculated distances
highlighted. This process is iterated from lower samples to
higher resolutions, continuing to bound the path. Fewer points
have to be unnecessarily computed, at the cost of representing
sharp gradients in the speed of action, more smoothly. We see
the smoothing of these gradients when comparing the warping
paths shown in Figure 9 and Figure 6. By computing the
DTW between each trajectory and collecting them, we indicate
temporally aligning samples as points along the trajectories in
Figure 10. Multiscaling is especially effective for our case
where we do not want rapid motions to be represented in
our trajectory, but should be noted as a limitation across
applications.

By resampling within thresholded pixels, we rebuild the
warping path up to full resolution. There, we can see the effect
of resampling the DTW in that the steeper gradients of our full

Traj3 vs Trajd: Downsampled XYZ trajectories (factor=4) 8

g g P g e Traj3 vs Traj4: DTW cost + path (factor=4;
—~— Demos (ds x4) 35
-0.25

)
-0.20
-0.15
-0.10
-0.05
40

Fig. 7: DTW of demos downsampled by a factor of 4

distance (XYZ)

ise

5
pointwi

]
0 10 20 30
Demo 4 Index

Trai3 vs Trajd: Downsampled XYZ trajectories (factor=2, y
g g P g (D m’ 5 Traj3 vs Traj4: DTW cost + path (factor=2)

—— Demod (ds

—— Demos (ds x2)

-0.25

-0.20

v T
o o
5 k)

pointwise distance (XYZ)

-0.05

0 20 40 60 80
Demo 4 Index

Fig. 8: DTW resampled up to a factor of 2 within a local band

warping path are now smoothed, but the number of operations
required is significantly reduced.

Multiscale DTW warping path (XYZ): demo3 -» demo4

140

120 A

100 1

80 A

60

demo3 index

40

20 1

0 25 50 75 100 125 150 175 200
demo4 index

Fig. 9: Multiscale Warping Path

We apply this multiscale DTW to all of the remaining
trajectories, aligning them.

V. GAUSSIAN MIXTURE REGRESSION

To optimally perform behavior cloning from multiple kines-
thetic teaching demonstrations, we represent the trajectories
with a gaussian mixture model. A combination of gaussian
distributions describes the mean and variance of the data
throughout the motion. The mean follows the general pathway
of the task action, while the variance identifies where the
trajectories are restricted to align at certain points such as

ECEN 524 - ROBOT LEARNING, SANTA CLARA UNIVERSITY, WINTER 2026

Multiscale DTW aligned to demo4 timeline (XYZ)

Fig. 10: Multiscale DTW Applied to Multiple Trajectories

the pick and place points of interest in our demonstrations.
Together, this reduces the amount of data required to represent
the trajectories so that the parameters can be estimated via
expectation maximization. We define a loss function and adjust
the parameters to converge towards the optimal control policy.

A. Bayesian Information Criterion

Before computing the probabalistic model of our data we
first need to determine the model complexity so that we can
accurately represent it without overfitting and memorizing
noise. Bayesian Information Criterion (BIC) defines the num-
ber of parameters required by balancing the likelihood that
they will fit N data points with a penalty term that discourages
unnecessary gaussians. The minimum BIC term is found by
iterating for an increasing number of gaussians until it is no
longer growing as shown in Figure 11. We calculate BIC with
the sklearn library where we can pass a gaussian mixture
model for it to compute for us.

BIC = —2LogL(0) + kLogN 2)

GMM model selection by BIC.pdf

-1000

-2000

BIC (lower is better)

-3000

2 4 6 8 10 12
n_components

Fig. 11: BIC

B. Gaussian Mixture Model

With the optimal number of components computed by the
BIC we can then fit the Gaussian Mixture Model (GMM) to
the set of trajectories. In this case we see 11 gaussians fit
across all three dimensions. Doing so you produce a vector
of means per gaussian, but also a covariance matrix defining
not only the variance of the data across trajectories but also
across dimensions to show correlations in both shape and
orientations. For Figure 12 we display the gaussians and
highlight those most dense at the mean where the covariance
matrix is minimized. Such points correlate with our pick and
place extrema where the movements become more precise
and calculated to specifically perform the endpoint grasp and
release task rather than just transferring the object.

GMM components over aligned demos (x vs t_ref)

(a) X Vs tref

GMM components over aligned demos (y vs t_ref)

0 25 50 75 100 125 150 175 200
tref

(b) y vs trer

GMM components over aligned demos (z vs t_ref)

0.04
0.02
0.00
-0.02
N
-0.04
~0.06
-0.08

-0.10

0 25 50 75 100 125 150 175 200
t_ref

(C) Z VS tref

Fig. 12: GMM components over aligned demonstrations

C. Gaussian Mixture Regression

The GMM is a fitted statistical representation of the com-
plex dataset of values that constructs the demonstrations. From
this, we can perform regression, the supervised machine learn-
ing process of fitting a model to meet target values. We apply
optimization to adjust weights and minimize the cost function
which quantifies the difference from the goal. From the input,
the influence of each gaussian on the trajectory policy is
learned to meet the output with the covariance describing

ECEN 524 - ROBOT LEARNING, SANTA CLARA UNIVERSITY, WINTER 2026

confidence. Fusing these output gaussian distributions gives
a predicted trajectory following our learned behavior.

Our GMR produces a stable mean along the path from
the initial to the end goal position. Figure 13 shows a GMR
control policy for the equivalent positions overlayed on the
demonstrations that is naturally smoother than any of the
human guided demonstrations. Furthermore, Figure 16a, b, and
¢ depict how the model generalizes to adjusting the initial and
endpoints and following a simiar trajectory still.

GMR mean trajectory (XY projection, conditioned on t
0.95

GMR mean trajectory (XYZ, conditioned on time)
0.90

0.85
0.025
0.000
0.80 20.025
20.050

demo3 =0.075

078 demo4 15100
demo5 demo3 i s
0.70 demo8 demo4 <084
—— GMR mean (xy) demo5 656?,2

demos 078

0.
005 010 015 020 025 030 GMRmean (2) , 55 076

Fig. 13: GMR Path

D. Piecewise GMM

For advanced tasks, GMR can fail to learn, so we use high-
level information on the task to split the data into multiple
trajectories for more accurate GMM. In the case of our pick
and place demonstrations, we only have a single operation,
and still it was vital we used our understanding of the data
to evaluate where the start and finish positions were occurring
and reduce any additional noise. If we were to also perform
another action in the same demonstration, for the control
policy to effectively learn, we would have to break down the
tasks into the high level operations so that GMM is only fit
to one task at a time.

VI. OBSTACLE AVOIDANCE WITH GMR

To further improve our imitation learning policy, we intro-
duce a control adaptation for avoiding obstacles in a circular
manner, by describing a repulsive field sourced from its
centerpoint. The force vector is a function of the inverse
distance from the obstacle when within a threshold range,
adjusting the trajectory to move away while maintaining any
momentum from the path in other directions.

A. Example of Circular Avoidance

We first tested our policy in 2-dimensions with a simple
sine wave representing the GMR trajectory. From this, we find
that the model can successfully avoid the object, but to do
so in an acceptable manner, we need to introduce smoothing
so that the robot is not taken off its predicted trajectory
so sharply. Immediate deviations in the target direction can
produce large forces when the rigid body has a high mass or
under high capacity load, which increases demand on hardware
and introduces further safety constraints.

B. Avoidance in 3D

To effectively perform the smoothing of the avoidance in 3-
dimensions, we integrate a Laplacian smoothing filter which
uses second order smoothing. A second order filter counters
the high gradient distortions in acceleration and develops the
desired smooth curvature around the obstacle that we see
applied to our computed GMR in Figures 14 and 15.

Nominal (no avoidance) — XY projection With obstacle avoidance — XY projection

—— trajectory
0.75 ® start 0.75 ® start

—— trajectory

m goal
Obstacle
1772 Obstacle influence

m goal
0.70 Obstacle
CZ2 Obstacle influence

005 0.10 0.15 0.20 0.25 0.30 005 010 0.15 020 025 0.30

Fig. 14: Applying Circular Avoidance in xy

GMR generalized pick-place cases + obstacle avoidance

70.10
70.05
70.00
z
=0.05
=0.10
=0.15

< 0.95
Case A: pick->place p < 0.90
Case B: pick->place < 0.85
Case C: pick->place < 0.80y

Case D: obstacle avoidance . 0.75

o Obstacle center o 0.70

Fig. 15: GMR Generalization and Spherical Avoidance in 3-
Dimensions

VII. CONCLUSION

Overall, we have shown that we were able to successfully
reproduce a generalized robotic imitation learning policy from
kinesthetic teaching using Dynamic Movement Primitives,
Dynamic Time Warping, and Gaussian Mixture Regression to
model preprocessed demonstrations. This robust policy from
state to action mapping can guide robot behavior for appli-
cations across all industries. Kinesthetic teaching provides
an intuitive medium to communicate and reproduce desired
behavior.

ACKNOWLEDGMENT OF Al

Code for this project was generated by LLMs:

o ChatGPT 5.2
o Claude Opus 4.5

ECEN 524 - ROBOT LEARNING, SANTA CLARA UNIVERSITY, WINTER 2026

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robotics and Autonomous Systems,
vol. 57, no. 5, pp. 469-483, May 2009, doi: 10.1016/j.robot.2008.10.024.

[2] A.J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes
for learning motor primitives,” in Advances in Neural Information Pro-
cessing Systems (NIPS), vol. 15, 2002.

[3] M. Saveriano, F. J. Abu-Dakka, A. Kramberger, and L. Peternel, “Dy-
namic movement primitives in robotics: A tutorial survey,” The Inter-
national Journal of Robotics Research, vol. 42, no. 13, pp. 1133-1184,
2023, doi: 10.1177/02783649231201196.

[4] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328-373, Feb. 2013,
doi: 10.1162/NECO_a_00393.

[S] M. Miiller, Information Retrieval for Music and Motion. Berlin, Heidel-
berg: Springer, 2007, doi: 10.1007/978-3-540-74048-3.

[6] S. Calinon, “A tutorial on task-parameterized movement learning and
retrieval,” Intelligent Service Robotics, vol. 9, no. 1, pp. 1-29, 2016, doi:
10.1007/s11370-015-0187-9.

[7]1 A. Fabisch, “PyDMP: A simple implementation of dynamical movement
primitives in Python,” GitHub repository, 2024. [Online]. Available:
https://github.com/AlexanderFabisch/PyDMP/tree/master. Accessed: Feb.
2026.

[8] Dynamic Time Warping Suite, “Welcome to the Dynamic Time Warp
suite,” 2026. [Online]. Available: https://dynamictimewarping.github.io/.
Accessed: Feb. 2026.

[9] scikit-learn developers, “Gaussian Mixture Models — scikit-learn 1.5.0
documentation,” scikit-learn.org, 2025. [Online]. Available: https://scikit-
learn.org/stable/modules/mixture.html. Accessed: Feb. 2026.

[10] J. Landers, ‘https://github.com/JacktheLander/Lab-
Projects/blob/main/Robot-Learning/Imitation_Learning/ImitationLearning.ipynb’

